Akt activation suppresses Chk2-mediated, methylating agent-induced G2 arrest and protects from temozolomide-induced mitotic catastrophe and cellular senescence.
نویسندگان
چکیده
Pharmacologic inhibition of the DNA signal transducers Chk1 and p38 blocks G2 arrest and sensitizes glioblastoma cells to chemotherapeutic methylating agent-induced cytotoxicity. Because Akt pathway activation has been suggested to also block G2 arrest induced by DNA-damaging agents and because glioma cells frequently have high levels of Akt activation, we examined the contribution of the Akt pathway to methylating agent-induced G2 arrest and toxicity. U87MG human glioma cells containing an inducible Akt expression construct were incubated with inducing agent or vehicle, after which the cells were exposed to temozolomide and assayed for activation of the components of the G2 arrest pathway and survival. Temozolomide-treated control cells activated the DNA damage signal transducers Chk1, Chk2, and p38, leading to Cdc25C and Cdc2 inactivation, prolonged G2 arrest, and loss of clonagenicity by a combination of senescence and mitotic catastrophe. Temozolomide-treated cells induced to overexpress Akt, however, exhibited significantly less drug-induced Cdc25C/Cdc2 inactivation and less G2 arrest. Akt-mediated suppression of G2 arrest was associated not with alterations in Chk1 or p38 activation but rather with suppression of Chk2 activation and reduced recruitment of Chk2 to sites of damage in chromatin. Unlike bypass of the G2 checkpoint induced by pharmacologic inhibitors of Chk1 or p38, however, Akt-induced bypass of G2 arrest suppressed, rather than enhanced, temozolomide-induced senescence and mitotic catastrophe. These results show that whereas Akt activation suppresses temozolomide-induced Chk2 activation and G2 arrest, the overriding effect is protection from temozolomide-induced cytotoxicity. The Akt pathway therefore represents a new target for the sensitization of gliomas to chemotherapeutic methylating agents such as temozolomide.
منابع مشابه
DNA damage induced by temozolomide signals to both ATM and ATR: role of the mismatch repair system.
The mammalian mismatch repair (MMR) system has been implicated in activation of the G(2) checkpoint induced by methylating agents. In an attempt to identify the signaling events accompanying this phenomenon, we studied the response of MMR-proficient and -deficient cells to treatment with the methylating agent temozolomide (TMZ). At low TMZ concentrations, MMR-proficient cells were growth-inhibi...
متن کاملAbrogation of the Chk1-mediated G(2) checkpoint pathway potentiates temozolomide-induced toxicity in a p53-independent manner in human glioblastoma cells.
Temozolomide (TMZ) produces O(6)-methylguanine in DNA, which in turn mispairs with thymine, triggering futile DNA mismatch repair (MMR) and ultimately cell death. We found previously that in p53-proficient human glioma cells, TMZ-induced futile DNA MMR resulted not in apoptosis but rather in prolonged, p53- and p21-associated G(2)-M arrest and senescence. Additionally, p53-deficient cells were ...
متن کاملMitotic catastrophe and cell cycle arrest are alternative cell death pathways executed by bortezomib in rituximab resistant B-cell lymphoma cells
The ubiqutin-proteasome system (UPS) plays a role in rituximab-chemotherapy resistance and bortezomib (BTZ) possesses caspase-dependent (i.e. Bak stabilization) and a less characterized caspase-independent mechanism-of-action(s). Here, we define BTZ-induced caspase-independent cell death pathways. A panel of rituximab-sensitive (RSCL), rituximab-resistant cell lines (RRCL) and primary tumor cel...
متن کاملIn vitro and in vivo radiosensitization induced by the DNA methylating agent temozolomide.
PURPOSE Temozolomide, a DNA methylating agent, is currently undergoing clinical evaluation for cancer therapy. Because temozolomide has been shown to increase survival rates of patients with malignant gliomas when given combined with radiation, and there is conflicting preclinical data concerning the radiosensitizing effects of temozolomide, we further investigated the possible temozolomide-ind...
متن کاملThe p38 mitogen-activated protein kinase pathway links the DNA mismatch repair system to the G2 checkpoint and to resistance to chemotherapeutic DNA-methylating agents.
Although human cells exposed to DNA-methylating agents undergo mismatch repair (MMR)-dependent G(2) arrest, the basis for the linkage between MMR and the G(2) checkpoint is unclear. We noted that mitogen-activated protein kinase p38alpha was activated in MMR-proficient human glioma cells exposed to the chemotherapeutic methylating agent temozolomide (TMZ) but not in paired cells made MMR defici...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 65 11 شماره
صفحات -
تاریخ انتشار 2005